

LDLS™ Laser-Driven Light Source

From The Innovators in Light

•EQ-1500 LDLS[™] System

•High brightness LDLS for free-space optics

Today's Lamp Technologies

Limitations with Arc-Lamps

- Arc-Lamps use electrodes to conduct electrical current through the gas heat the gas to high temperature
 - The electrodes limit the temperature of the gas
 - Limited temperature leads to limited DUV
 - The electrodes erode and shorten lamp lifetime
 - Arc flicker reduces effective brightness and adds noise

Stability

Lifetime

ENERGETIQ **Limitations with Deuterium Lamps**

- Low brightness, relatively large plasma
- Short life: 500-1000hrs to 50% output

1

X

Stability

Lifetime

Limitations with Tungsten-Halogen Lamps

Source: Ocean Optics

Broadband	\checkmark
Brightness	X
Stability	\checkmark
Lifetime	X

- Short lifetime, large filament area, low power <400 nm</p>
- Usually combined with Deuterium lamp to cover broad spectrum
 - Gap in spectrum around 400nm
 - Low brightness from 2 separate emitters
 - Changing spectrum from 2 different lifetimes

A Timely Convergence....

- Traditional Lamp sources have reached the end of their roadmap
 - Incremental improvement in recent years

Costs for infra-red laser diodes have fallen dramatically in recent years

- Driven by telecom and fiber lasers for industrial applications
- Costs continue to decline substantially each year.

Catalyst for a new class of light sources that disrupts the status quo

The brightest, most consistent broadband light sources since the sun

•US Patent # 7,435,982

- High brightness: ~100 um diameter Xenon plasma,
- Efficient coupling into small fibers or spectrometer slits
- Point source enables collimation over long distances

EQ-99 Spectral Distribution

•Typical Data

EQ-99FC Spectral Distribution

•Typical Data

EQ-1500 Spectral Distribution

ENERGETIQ

•Typical Data

Comparing LDLS with Traditional Lamps

•Spectral radiance calibrated at 254nm, Typical Data

ENERGETIQ Confidential • 1/31/2013 • 14

LDLS: UV-Vis-NIR Radiance 170nm – 1700nm

•Typical Data for EQ-99

ENERGETIQ Confidential • 1/31/2013 • 15

LDLS™: Stable & Long-Life

Light Source	<u>Change in Broadband Output /1000 Hrs</u> <u>(Typical)</u>	<u>Life-Test Hours</u> <u>to Date</u>	<u>Notes</u>
EQ-1500	~ -1%	>10,000	Test on-going
EQ-99	~ -1%	>6,000	Test on-going
30W D2 Lamp	-50% (depending on model)		Source: Heraeus Data Sheet
75W Xe Lamp	-25% to -50% (depending on model)		Source:Hamamatsu Data Sheet

EQ-99 Plasma Images

	PS37LH34	PS38LH39
FWHM horizontal, µm	64	61
FWHM vertical, µm	147	140
Images		

ENERGETIQ Spatial Stability of Arc Lamp vs LDLS

450W Xenon Lamp

Spatial Stability Results

Center of mass position of the plasma 1 0.8 Vertical displacement COM, um 0.6 0.4 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 -0.6 -0.4 -0.2 0.2 -1 -0.8 0 0.4 0.6 0.8 Horizontal displacement COM, um

- Collected and stored 2500 images @ 200 frames per second
- Calculated center of mass for each image using ImageJ (image analysis software)
- Standard deviation of the plasma light intensity center of mass position
 - Horizontal: 0.145 µm
 - Vertical: 0.094 μm

Measurement of Temporal Variation in Radiant Flux for EQ-99

Achromatic Lens Achromatic Lens ACH 25.4x76.2, VIS-NIR ACH 25.4x38.1, VIS-NIR Edmund - 49794 Edmund - 49791 Field Aperture EQ-99 200µm Controller EQ-99 Lamp Head 1.5" Diameter Integrating Sphere Spectral Fiber Analysis Spectrometer

Light collected by 0.3NA Achromat pair from 100um plasma region

- Calibrated integrating sphere/fiber spectrometer:
 - 1000 spectral samples (400-830nm), 8ms integration time, 8 seconds total
- Measurement repeated for ten EQ-99 units.

Temporal Variation in Radiant Flux From 100µm Plasma, 0.3NA

200µm diameter pinhole with 2X optics, 400nm to 830nm wavelength band, 1000 samples, 8ms integration time, 8s total

EQ-99	Intensity Variation, 3x std.dev. [%]	P-P/Mean (%)
Unit-A	0.27	0.58
Unit-B	0.33	0.73
Unit-C	0.17	0.34
Unit-D	0.20	0.39
Unit-E	0.19	0.42
Unit-F	0.29	0.65
Unit-G	0.34	0.72
Unit-H	0.21	0.48
Unit-I	0.18	0.42
Unit-J	0.33	0.79
Average	0.25%	0.55%

- For the 8 second sample period, average intensity variation of:
 - <0.1% (1σ)
 - 0.25% (3σ)
 - 0.55% (p-p/mean)

Benefits of LDLS Technology

- Very high brightness across complete spectrum
 - 170nm through visible and out to 2100 nm
- Eliminates need for multiple lamps (replaces D2/Tungsten/Xenon Arc)
 - Simplified optical system
- Excellent Spatial stability
 - Repeatable measurements
- Superior short and long term power stability
 - Repeatable measurements
- Electrodeless operation for long life
 - Reduced consumable costs
 - Minimal recalibration of instrument

Broadband	\checkmark
Brightness	\checkmark
Stability	\checkmark
Lifetime	\checkmark

Applications

- UV-Vis Spectrometry
- Monochromator Source
- PEEM
- Atomic Absorption Spectroscopy
- Materials Characterization
- Environmental Analysis
- Hyperspectral Imaging
- Gas Phase Measurements
- Advanced Microscopes
- Endoscopes/Borescopes

•EQ-99 LDLS System

NEW! EQ-99 Manager

A Smart Controller for EQ-99 Series LDLS[™] Products

- Available Shutter
- Computer control

LDLS Fiber Optic Assemblies

- Turn-Key system with EQ-99FC
- For high brightness applications
- Proprietary termination process
- Longer life than standard fibers
- Choice of Fibers
 - DUV/Vis Solarization Resistant
 - ✤ (180nm 900 nm)
 - 115µm, 230µm, 455µm Core
 - Broadband Version
 - ✤ (200nm 2100 nm)
 - 100μm, 200μm, 400μm, 600μm Core

EQ-99CAL Calibrated LDLS

- Based on Award Winning EQ-99 Design
- Broadband, High Brightness Source
- Calibration Wavelengths: 200nm -800nm (with single source)
- Irradiance Calibration Traceable to NPL
- Temperature Controlled Lamp House for highly stable measurements
- Long Intervals between Recalibration
 - Recommended 1 year or 1000 hours of operation (which ever comes first)

New EQ-99CAL Calibrated LDLS

Coupling Accessories

EQ-99 LDLS with OAP System

ENERGETIQ

- Designed to couple EQ-99 and EQ-1500 light into spectrometers or optical fibers
- Off-Axis Parabolic (OAP) Mirror Assembly
- Efficiently couple full wavelength range
- Variety of focal length and NA options
- Free beam or SMA fiber coupling options
- Housings are Nitrogen purgeable

EQ-1500 LDLS with OAP System

ENERGETIQ Broadband Fiber Collimators For LDLS

EQ-99FC LDLS with Fiber Collimator

- Designed to collimate EQ-99FC fiber output
- Reflective Mirror Assembly
- Efficiently collimate from 200 2400 nm
- Two output beam sizes available; 6.7 mm and 11 mm diameter
- SMA fiber connection
- Low divergence (depends on fiber size)

Summary

- Very high brightness across complete spectrum
 - 170nm through visible and out to 2100 nm
 - Easy coupling to small fibers and spectrometer slits
 - Ease of collimation
- Eliminates need for multiple lamps (replaces D2/Tungsten/Xenon Arc)
 - Simplified optical system
- Excellent Spatial stability
 - Repeatable measurements
- Superior short and long term power stability
 - Repeatable measurements
- Electrodeless operation for long life
 - Reduced consumable costs
 - Minimal recalibration of instrument

LDLS[™] Laser-Driven Light Source www.energetiq.com